The statistics of the entanglement changes generated by the Hadamard - CNOT quantum circuit
نویسندگان
چکیده
We consider the change of entanglement of formation ∆E produced by the Hadamard-CNOT circuit on a general (pure or mixed) state ρ describing a system of two qubits. We study numerically the probabilities of obtaining different values of ∆E, assuming that the initial state is randomly distributed in the space of all states according to the product measure recently introduced by Zyczkowski et al.
منابع مشابه
Entanglement of an Atom and Its Spontaneous Emission Fields via Spontaneously Generated Coherence
The entanglement between a ?-type three-level atom and its spontaneous emission fields is investigated. The effect of spontaneously generated coherence (SGC) on entanglement between the atom and its spontaneous emission fields is then discussed. We find that in the presence of SGC the entanglement between the atom and its spontaneous emission fields is completely phase dependent, while in absen...
متن کاملOn The Complexity of Quantum Circuit Manipulation
The stabilizer class of circuits, introduced by Daniel Gottesman, consists of quantum circuits in which every gate is a controlled-NOT (CNOT), Hadamard or phase gate [5]. These circuits have several interesting properties. For example, they are robust enough to allow for entangled states, yet they are known to be simulable in polynomial time by a classical computer. These circuits also naturall...
متن کاملVoltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy
The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...
متن کاملQuantum Circuit Optimization by Hadamard Gate Reduction
Due to its fault-tolerant gates, the Clifford+T library consisting of Hadamard (denoted by H), T , and CNOT gates has attracted interest in the synthesis of quantum circuits. Since the implementation of T gates is expensive, recent research is aiming at minimizing the use of such gates. It has been shown that T -depth optimizations can be implemented efficiently for circuits consisting only of ...
متن کاملCoherent Control of Quantum Entropy via Quantum Interference in a Four-Level Atomic System
The time evaluation of quantum entropy in a four-level double- type atomic system is theoretically investigated. Quantum entanglement of the atom and its spontaneous emission fields is then discussed via quantum entropy. It is found that the degree of entanglement can be increased by the quantum interference induced by spontaneous emission. The phase dependence of the atom-field entanglement is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008